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Abstract. We use the theory of dynamical invariants to yield a simple derivation of noncyclic
analogues of the Abelian and non-Abelian geometric phases. This derivation relies only on the
principle of gauge invariance and elucidates the existing definitions of the Abelian noncyclic
geometric phase. We also discuss the adiabatic limit of the noncyclic geometric phase and compute
the adiabatic non-Abelian noncyclic geometric phase for a spin-1 magnetic (or electric) quadrupole
interacting with a precessing magnetic (electric) field.

1. Introduction

Since the publication of Berry’s seminal paper [1] on the adiabatic geometric phase, the concept
of geometric phase has been generalized in a number of ways. Following the work of Aharonov
and Anandan [2] on nonadiabatic geometric phase, Samuel and Bhandari [3] showed that one
could indeed define an analogue of the Abelian geometric phase for a quantum state that does
not undergo a cyclic evolution. Zak [4], Aitchison and Wanelik [5], Mukunda and Simon [6],
Pati [7, 8] and de Polavieja and Sjöqvist [9] have ellaborated on the theoretical aspects of
noncyclic geometric phases, and Wu and Li [10], Weinfurter and Badurek [11], Christian and
Shimony [12], Wagh and Rakhecha [13] and Waghet al [14] have explored its experimental
consequences. In all these investigations the authors consider Abelian noncyclic geometric
phases. The main purpose of this paper is to offer an alternative approach to noncyclic
geometric phases which clarifies the existing results on the Abelian noncyclic geometric phase
and allows for its non-Abelian generalization.

The cyclic geometric phase can be conveniently discussed within the framework of the
theory of dynamical invariants of Lewis and Riesenfeld [15]. The application of dynamical
invariants in the study of the cyclic geometric phases has been considered by Morales [16] and
Monteolivaet al [17] for the Abelian case and by the present author [18] for the non-Abelian
case.

In this paper, we shall first present a brief review of the necessary results from the theory
of dynamical invariants and comment on their relevance to the cyclic geometric phases in
section 2. In section 3, we outline an alternative approach to the nonadiabatic cyclic geometric
phase which is essentially the same as Berry’s approach to the adiabatic geometric phase [1].
This generalizes the analysis of [19] in which such an approach is developed for the description
of the nonadiabatic cyclic geometric phase of a magnetic dipole interacting with a precessing
magnetic field. In section 4, we derive an expression for the evolution operator and discuss
its gauge invariance. In section 5, we give our definition of the noncyclic geometric phase
and explore its relationship to the cyclic geometric phase [18, 20]. In section 6, we restrict
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ourselves to the Abelian case and compare our definition of the noncyclic Abelian geometric
phase with the earlier definitions [5]. In section 7, we present a discussion of the adiabatic
approximation and show that our analysis reproduces the results of [9] in the adiabatic limit.
In section 8, we calculate the adiabatic non-Abelian noncyclic geometric phase for a spin-1
magnetic (or electric) quadrupole interacting with a precessing magnetic (resp. electric) field.
Finally, we present our concluding remarks in section 9.

2. Invariant operators and cyclic geometric phase

As shown by Lewis and Riesenfeld [15], one can write the solution of the Schrödinger equation

i
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉 (1)

for a time-dependent HamiltonianH(t), as a linear combination of certain eigenvectors of a
Hermitian dynamical invariant. The latter is a Hermitian operatorI (t) satisfying

dI (t)

dt
= i[I (t),H(t)]. (2)

We shall assume that bothH(t) andI (t) have discrete spectra.
Now let us label the eigenvalues ofI (t) by λn and the degree of degeneracy ofλn by ln.

Furthermore, let|λn, a; t〉 be arbitrary orthonormal eigenvectors ofI (t) satisfying

I (t)|λn, a; t〉 = λn|λn, a; t〉 (3)

〈λm, b; t |λn, a; t〉 = δmnδba (4)∑
n

ln∑
a=1

|λn, a; t〉〈λn, a; t | = 1 (5)

wherea andb are degeneracy labels taking their values in{1, 2, . . . , ln}.
Clearly, unlike the eigenvaluesλn and the corresponding degeneracy subspacesHλn(t),

the eigenvectors|λn, a; t〉 are not uniquely determined by the eigenvalue equation (3). They
are only determined up to unitary transformations of the degeneracy subspacesHλn(t),

|λn, a; t〉 → |λn, a; t〉′ =
ln∑
b=1

|λn, b; t〉uba(t) (6)

whereuab(t) are the entries of an arbitrary unitaryln × ln matrixu(t).
The main result of Lewis and Riesenfeld [15] is that one can choose a particular set of

eigenvectors|λn, a; t〉′ that are solutions of the Schrödinger equation (1). These eigenvectors
are given by [18]:

|λn, a; t〉′ :=
ln∑
b=1

|λn, a; t〉unab(t) (7)

where

un(t) := T e−i
∫ t

0 1
n(t ′) dt ′un(0) = T e−i

∫ t
0 [En(t ′)−An(t ′)] dt ′un(0). (8)

T stands for the time-ordering operator and1n(t), En(t) andAn(t) are Hermitianln × ln
matrices with entries

1n
ab(t) := Enab(t)−Anab(t) (9)

Enab(t) := 〈λn, a; t |H(t)|λn, b; t〉 (10)

Anab(t) := i

〈
λn, a; t

∣∣∣∣ d

dt

∣∣∣∣ λn, b; t〉 (11)
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respectively. In other words,un(t) is a solution of the matrix Schrödinger equation

i
d

dt
un(t) = 1n(t)un(t). (12)

If the matricesEn(t) andAn(t) commute, then we can write

un(t) = T e−i
∫ t

0 E
n(t ′) dt ′T e−i

∫ t
0 A

n(t ′) dt ′un(0). (13)

For the case where the invariantI (t) is periodic [17, 18], i.e.I (T ) = I (0) for someT ,
|λn, a; T 〉 = |λn, a; 0〉 and|λn, a; t〉′ undergoes a cyclic evolution. The corresponding non-
Abelian nonadiabatic cyclic geometric phase [20] is given by0n(T ) where0n(t) is defined to
be the unique solution of the matrix Schrödinger equation

i
d

dt
0n(t) = −An(t)0n(t) 0n(0) = 1. (14)

Alternatively,

0n(t) := T ei
∫ t

0 A
n(t ′) dt ′ . (15)

If the eigenvalueλn is nondegenerate, thenln = 1 and we have

un(t) = eiδn(t)0n(t) (16)

where

δn(t) := −
∫ t

0
En(t ′) dt ′ = −

∫ t

0
〈λn; t ′|H(t ′)|λn; t ′〉 dt ′ (17)

0n(t) = eiγn(t) and γn(t) :=
∫ t

0
An(t ′) dt ′ =

∫ t

0
i

〈
λn; t ′

∣∣∣∣ d

dt ′

∣∣∣∣ λn; t ′〉 dt ′. (18)

In this case0n(T ) is the Abelian nonadiabatic cyclic geometric phase [2].

3. An alternative approach to nonadiabatic cyclic geometric phase

In order to make the geometric character of the cyclic geometric phase more transparent, we
shall express the invariantI (t) as a linear combination of a set of linearly independent constant
Hermitian operatorsXi ,

I (t) =
N∑
i=1

θ i(t)Xi. (19)

HereN is a fixed non-negative integer, the coefficientsθ i are real-valued functions, andXi
are generators of the groupU(H) of unitary transformations of the Hilbert spaceH. If the
system has a finite-dimensional dynamical groupG, thenXi are the representations of the
generators ofG. In this caseN is just the dimension ofG. However, if the Hilbert space is
infinite-dimensional, then in principle one will need an infinite numberN of generatorsXi of
U(H) to satisfy (19)†, and one must find a way to make the right-hand side of (19) well defined.
We shall not be concerned with the subtleties of the infinite-dimensional unitary group [21],
and assume thatN is finite.

Now, since the time dependence ofI (t) is governed by those of the parametersθ i , we
can consider the parameter-dependent operatorI [θ ] with eigenvalues‡λn and eigenvectors
|λn, a; θ〉, and write

I (t) = I [θ(t)] and |λn, a; t〉 = |λn, a; θ(t)〉. (20)

† Note that for each value oft there is a finite numberN of generatorsXi for which (19) holds. However, for an
infinite-dimensional Hilbert space, ast changesN might not have an upper bound. Therefore, in order to satisfy (19)
one would, in general, need to include an infinite number of generators of the groupU(H).
‡ Note that the eigenvalues of an invariant operator are constant [15,18].
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Hereθ stands for(θ1, θ2, . . . , θN). The parametersθ i may be viewed as local coordinates of
a parameter spaceM. As time progresses they trace a curveC inM.

If the system possesses a dynamical groupG, then we can introduce the parameter-
dependent Hamiltonian

H [R] =
N∑
i=1

RiXi (21)

and identifyH(t) with H [R(t)] [1]. This means that the parameter spaceM of the invariant
(19) is the same as the parameter space of the Hamiltonian (21). In this case, we can use
the results of [22] to identifyM with a submanifold of the flag manifoldG/T whereT is a
maximal torus ofG.

Now suppose that the curveC traced by the parametersθ(t) lies in a local coordinate patch
of the parameter spaceM. In this case, we can introduce the nonadiabatic analogue of the
non-Abelian Berry connection one-form [19,23],

An[θ ] =
N∑
i=1

Ani [θ ] dθ i . (22)

The matrix elements ofAn[θ ] and its componentsAni [θ ] are given by

Anab[θ ] := i〈λn, a; θ |d|λn, b; θ〉 (23)

(Ani [θ ])ab := i

〈
λn, a; θ

∣∣∣∣ ∂∂θ i
∣∣∣∣ λn, b; θ〉 (24)

respectively. In equation (23)d stands for the exterior derivative with respect toθ i . In view
of equations (11), (20), (22), (23), and (15), we have

An(t) dt =
N∑
i=1

Ani [θ(t)]
dθ i(t)

dt
dt = An[θ(t)] (25)

0n(t) = Pei
∫ θ(t)
θ(0) A

n[θ ] (26)

whereP stands for the path-ordering operator. In particular, for a periodic invariant, the curve
C traced byθ(t) is closed, and the non-Abelian cyclic geometric phase takes the form

0n(T ) = Pei
∮
C A

n[θ ] . (27)

As pointed out in [18], this expression agrees with Anandan’s definition of non-Abelian cyclic
geometric phase [20].

If C does not lie in a single coordinate patch ofM, one must evaluate the path-ordered
integrals in (26) and (27) along the segments ofC belonging to different coordinate patches
and multiply the resulting unitary matrices in the order in which the curveC is traversed in
time.

4. Evolution operator and its gauge invariance

In general, we can write any solution of the Schrödinger equation (1) as a linear combination
of |λn, b; t〉′, i.e.,

|ψ(t)〉 =
∑
n

ln∑
a=1

C̃na |λn, a; t〉′ =
∑
n

ln∑
a,b=1

Cnau
n
ba(t)|λn, b; t〉 (28)
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where

C̃na :=
ln∑
b=1

u
n†
ba(0)〈λn, b; t |ψ(0)〉 and Cna := 〈λn, a; t |ψ(0)〉. (29)

In view of equation (28), the evolution operator is given by

U(t) =
∑
n

ln∑
a,b=1

unab(t)|λn, a; t〉〈λn, b; 0|. (30)

Now let us recall that the eigenvectors|λn, a; θ〉 are not uniquely determined by the
eigenvalue equation

I [θ ]|λn, a; θ〉 = λn|λn, a; θ〉. (31)

They are subject to arbitrary gauge transformations

|λn, a; θ〉 → |λn, a; θ〉˜ :=
ln∑
b=1

|λn, b; t〉vnba[θ ] (32)

wherevnab[θ ] are entries of anln × ln unitary matrixvn[θ ]. In fact, if we denote the local
coordinate patch corresponding to the coordinatesθ i by O, vn may be viewed as a smooth
function mappingO to the unitary groupU(ln).

Using equation (23), we can easily derive the gauge transformation law forAn[θ ], namely

An[θ ] → Ãn[θ ] = vn[θ ]†An[θ ]vn[θ ] + ivn[θ ]† dvn[θ ]. (33)

Furthermore, in view of equations (25), (14), and (33), we have the following transformation
rules for0n(t) andun(t):

0n(t)→ 0̃n(t) = vn[θ(t)]†0n(t)vn[θ(0)] (34)

un(t)→ ũn(t) = vn[θ(t)]†un(t)vn[θ(0)]. (35)

A simple consequence of equations (32) and (35) is that the evolution operator (30) is invariant
under the gauge transformations.

For a periodic invariantI (t), with θ(T ) = θ(0), 0̃n(T ) is related to0n(T ) by a similarity
transformation

0̃n(T ) = vn[θ(0)]†0n(T )vn[θ(0)]. (36)

In other words, under a gauge transformation (32)0n(T ) transforms covariantly. Therefore, its
eigenvalues and, in particular, its trace are gauge invariant. These are essentially the physically
observable quantities associated with the non-Abelian cyclic geometric phase.

5. Noncyclic geometric phase

The main reason for Berry’s consideration of a periodic Hamiltonian [1] and Aharonov and
Anandan’s consideration of cyclic evolutions [2] is the fact that for a cyclic state with period
T—in our approach aT -periodic dynamical invariant—the unitary matrix0n(T ) transforms
convariantly under a gauge transformation (32). This property of0n(T ) guarantees that
its eigenvalues and its trace are gauge invariant. This in turn raises the issue of exploring
their physical consequences. There is, however, another way of constructing gauge-invariant
quantities using0n(t).
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In view of equations (34) and (35),0n(t) andun(t) have the same gauge transformation
properties. This means that if we replaceun(t) in the expression (30) for the evolution operator
by 0n(t), then we shall still obtain a gauge-invariant operator, namely

V (t) :=
∑
n

ln∑
a,b=1

0nab(t)|λn, a; θ(t)〉〈λn, b; θ(0)|. (37)

In fact, because the gauge transformations (32) are the unitary transformations of the
degeneracy subspacesHλn [θ(t)], the restriction (or projection) ofV (t) onto the degeneracy
subspaces, i.e.,

V n(t) :=
ln∑

a,b=1

0nab(t)|λn, a; θ(t)〉〈λn, b; θ(0)| (38)

will also be gauge invariant. By construction, the operatorsV n(t) are uniquely determined
by the curveC and its end points. In particular, they are independent of the duration of the
evolution. Therefore, they are also geometric quantities.

Next let us note that the gauge invariance and geometric character ofV n(t) will not be
affected, if we exchange the positions of|λn, a; θ(t)〉 and〈λn, b; θ(0)| in equation (38). In
this way we obtain a set of gauge-invariant scalars:

5n(t) :=
ln∑

a,b=1

0nab(t)〈λn, b; θ(0)|λn, a; θ(t)〉 =
ln∑

a,b=1

wnba(t)0
n
ab(t) = trace[wn(t)0n(t)]

(39)

where we have introduced theln × ln matriceswn(t) with entries

wnba(t) := 〈λn, b; θ(0)|λn, a; θ(t)〉. (40)

By definitionwn(t) only depend on the end points of the curveC. 0n(t) are also uniquely
determined byC. Therefore, as expected,5n(t) are geometric quantities.

Now let us consider aT -periodic invariant (a cyclic evolution), for which|λn, a; θ(T )〉 =
|λn, a; θ(0)〉. In this case,wn(T ) = wn(0) is just the identity matrix, and equation (39) reduces
to

5n(T ) = trace[0n(T )]. (41)

Therefore, for a cyclic evolution5n(T ) yields the trace of the non-Abelian cyclic geometric
phase [23,24].

On the other hand, since5n(t) is gauge invariant, we can compute it in a basis
{|λn, a; θ(t)〉?} in which0n(t) is diagonal. If we denote the eigenvalues of0n(t) by eiγ an (t),
then we have

5n(t) =
ln∑
a=1

eiγ an (t)
?〈λn, a; θ(t)|λn, a; θ(0)〉?. (42)

As seen from equation (42),5n(t) is, in general, a nonunimodular complex number.
In view of the above analysis, the matrix0̌n(C) defined by

0̌n(C) = 0̌n(t) := wn(t)0n(t) (43)

is a gauge-covariant geometric quantity. We shall therefore identify it as thenon-Abelian
noncyclic geometric phase factor. Clearly, the eigenvalues of̌0n(C) and its trace namely
5n(t) are gauge-invariant quantities which can, in principle, be observed experimentally. The
non-Abelian noncyclic geometric phase factor0̌n(C) is therefore as physically significant as
its cyclic counterpart (27).
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As mentioned above, for a cyclic evolution where the invariantI (t) is T -periodic,
|λn, a; θ(T )〉 = |λn, a; θ(0)〉andwn(T ) is the identity operator. In this case,0̌n(T ) is identical
with the cyclic geometric phase factor0n(T ) given by equation (27).

6. Abelian noncyclic geometric phase

For a nondegenerate eigenvalueλn of the invariantI (t), we have

0̌n(t) = wn(t)0n(t) = 5n(t) = 〈λn; θ(0)|λn; θ(t)〉eiγn(t) (44)

whereγn(t) is the phase angle given by (18). In particular,

|0̌n(t)| = |wn(t)| = |〈λn; θ(0)|λn; θ(t)〉| (45)

depends only on the end points of the curveC. If |0̌n(t)| 6= 0, then we can consider the phase
of 0̌n(t) which is given by

eiγ̌n(t) := 0̌n(t)

|0̌n(t)| = ei[ηn(t)+γn(t)] (46)

where

eiηn(t) := wn(t)

|wn(t)| =
〈λn; θ(0)|λn; θ(t)〉
|〈λn; θ(0)|λn; θ(t)〉| =

[ 〈λn; θ(0)|λn; θ(t)〉
〈λn; θ(t)|λn; θ(0)〉

]1/2

. (47)

The phase anglěγn(t) is a real noncyclic geometric phase angle. It consists of two pieces:
γn(t) that depends on the curveC, andηn(t) that depends on the end points ofC.

The phase factor (46) coincides with the ‘real noncyclic geometric phase’ introduced by
Aitchison and Wanelik [5]. As discussed by Aitchison and Wanelik it is equivalent to the
noncyclic geometric phase of Samuel and Bhandari [3] and Mukunda and Simon [6].

7. Adiabatic approximation and the noncyclic geometric phase in the adiabatic limit

LetH [R] be a parameter-dependent Hamiltonian with a discrete spectrum. We shall denote
the eigenvalues ofH [R] by En[R], their degree of degeneracy byN , and the corresponding
degeneracy subspaces byHn[R]. Let |n, a;R〉 form a complete set of orthonormal eigenvectors
of H [R]. They satisfy,

H [R]|n, a;R〉 = En[R]|n, a;R〉 (48)

wherea is a degeneracy label taking its value in{1, 2, . . . ,N }.
Now consider the time-dependent HamiltonianH(t) := H [R(t)], where the parameters

R(t) = (R1(t), R2(t), . . . , Rd(t)) trace a curveC in the parameter spaceM of the Hamiltonian.
We shall denote the duration of the evolution of the system byτ and suppose that during the
evolution no level crossings occur. Furthermore, letI (t)be a dynamical invariant satisfying (2),
and suppose that it depends on a set of parametersθ = (θ1, θ2, . . . , θN), i.e.,I (t) = I [θ(t)]
whereθ(t) traces a curveC in the parameter spaceM of the invariant. SinceI (t) yields
the solution of the Schrödinger equation, the dynamics of the system can be encoded in the
definition of a function

F : M →M defined by F(R) := θ. (49)

In particular,F maps the curveC onto the curveC, andI (t) = I [θ(t)] = I [F(R(t))]. Note,
however, that there does not exist a universal functionF describing all possible dynamical
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processes. In other words, the definition ofF also depends on the choice of the Hamiltonian
or alternatively the curveC. In this sense, it is more appropriate to define the function

F : PM → PM by F(C) = C (50)

wherePM andPM are the space of paths inM andM respectively. The latter are infinite-
dimensional spaces. Therefore, it is more convenient to use the functionF with the provision
of its nonuniversal character.

Next we define a normalized time variable bys := t/τ , and assume that for sufficiently
large values ofτ we can expandI (t) andH(t) in powers ofτ−1, i.e.,

I (t) = I (τs) = I0(s) +
∞∑
`=1

τ−`I`(s) and H(t) = H(τs) = H0(s) +
∞∑
`=1

τ−`H`(s)

(51)

whereI` andH` are Hermitian operators andI0 6= 0 6= H0. If we substitutet = τs and (51)
in (2) and take the limitτ → ∞, we find [I0(s),H0(s)] = 0. This means that in this limit,
whereI (t)→ I0(s) andH(t)→ H0(s), the eigenvectors ofI (t) andH(t) coincide. Using
the notation of the preceding sections, we have

lim
τ→∞ |λn, a; t〉 = |n, a; t〉. (52)

Because|λn, a; t〉 = |λn, a; θ(t)〉, |n, a; t〉 = |n, a;R(t)〉, and (52) is independent of the form
of the curveC,

lim
τ→∞ |λn, a; θ〉|C = |n, a;R〉|C. (53)

In particular, this implies that for sufficiently large values ofτ , we can choose an invariant
whose parameter space is the same as that of the Hamiltonian,M = M. Therefore,C andC
belong to the same parameter spaceM. In this case, we can also express (52) and (53) by

lim
τ→∞F = idM (54)

where idM is the identity function onM.
Now let us use equations (30) and (52) to compute the evolution operator in the limit

τ →∞. This leads to

lim
τ→∞U(t) = U

(0)(t) (55)

where

U(0)(t) :=
∑
n

N∑
a,b=1

un◦ab(t)|n, a; t〉〈n, b; 0| (56)

un◦(t) = eiδ◦n(t)0n◦ (t) (57)

δ◦n(t) := −
∫ t

0
En(t

′) dt ′ (58)

0n◦ (t) := Pei
∫ R(t)
R(0) A

n
◦ [R] (59)

(An◦[R])ab := i〈n, a;R|d|n, b;R〉. (60)

Here the subscript◦ is inserted to mean that the corresponding quantities are obtained in the
adiabatic limit (τ →∞) from the ones without a subscript◦. The matrix of one-formsAn◦[R]
is the non-Abelian Berry connection one-form [23].

In practice,τ is a finite number and the limitτ → ∞ is interpreted by the condition
that τ must be much larger than the time (inverse of energy) scale of the quantum system.
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If this happens to be the case the above results may be used. It is not difficult to check that
an operatorI (t) with the same eigenvectors as the Hamiltonian satisfies equation (2) only if
the eigenvectors of the Hamiltonian are constant. This is often not the case. Therefore, in
an eigenbasis{|n, a; t〉} of the Hamiltonian, the invariantI (t) is not diagonal. However, if
the above adiabaticity condition is fulfilled, i.e.,τ is much larger than the timescale of the
problem, then the off-diagonal matrix elements ofI (t) are much smaller than its diagonal
matrix elements. The approximation scheme in which one neglects the off-diagonal matrix
elements ofI (t) is called theadiabatic approximation, [25–27]. In this approximation, we
have

|λn, a; t〉 ≈ |n, a; t〉 U(t) ≈ U(0)(t) and F ≈ idM. (61)

This is a valid approximation scheme if and only if

Amnba (t) := i

〈
m, b;R

∣∣∣∣ d

dt

∣∣∣∣ n, a;R〉 = i〈m, b;R| dH(t)dt |n, a;R〉
En(t)− Em(t) ≈ 0 for m 6= n. (62)

Herem andn are arbitrary labels (satsifyingm 6= n) anda andb are arbitrary degeneracy
labels associated with the eigenvaluesEn(t) andEm(t), respectively. The second equation in
(62) is obtained by differentiating both sides of equation (48) with respect to time and taking
the inner product of both sides of the resulting equation with|m, b; t〉. The meaning of ‘≈ 0’
in (62) is that the left-hand side of (62) which has the dimension of frequency must be much
smaller than the frequency (energy) scale of the system.

In view of (61), we have the following expression for the adiabatic non-Abelian noncyclic
geometric phase (43):

0̌n◦ (t) = wn◦(t)0n◦ (t) (63)

wherewn◦(t) is anN ×N matrix with entries

wn◦ab(t) := 〈n, a;R(0)|n, b;R(t)〉. (64)

If En[R] is nondegenerate,N = 1 and

0̌n◦ (t) = wn◦(t)eiγ◦n(t) where γ◦n(t) :=
∫ R(t)

R(0)
An◦[R] =

∫ R(t)

R(0)
i〈n;R|d|n;R〉. (65)

The phase of̌0n◦ (t), namely

eiγ̌◦n(t) =
[ 〈n;R(0)|n;R(t)〉
〈n;R(t)|n;R(0)〉

]1/2

eiγ◦n(t) (66)

is precisely the Abelian adiabatic noncyclic geometric phase studied by de Polavieja and
Sjöqvist [9].

8. Application: spin-1 quadrupole in a precessing magnetic field

The simplest possible quantum system that allows for the occurrence of a non-Abelian
geometric phase is a system with a three-dimensional Hilbert space and a dynamical invariant
I (t) which has a nondegenerate and a degenerate eigenvalue [18]. If the system undergoes
an adiabatic evolution, then the role of the invariant is essentially played by the Hamiltonian.
In particular, the Hamiltonian must have a nondegenerate and a degenerate eigenvalue. The
moduli space of all such Hamiltonians (for a three-dimensional Hilbert space) has the manifold
structure of the projective spaceCP 2, [23]. A thorough treatment of the problem of the
adiabatic non-Abelian cyclic geometric phase for such a system is presented in [28]. In this
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section, we shall use the results of [28] to investigate the adiabatic non-Abelian noncyclic
geometric phasě0n◦ (t) for a spin-1 quadrupole interacting with a precessing magnetic or
electric field. The problem of the non-Abelian geometric phase for a spin-3

2 quadrupole has
been considered by Zee [24], Mead [29] and Avronet al [30,31]. For a bosonic system such
as the spin-1 quadrupole considered here, one can show that Berry’s connection one-form is
a pure gauge and Berry’s cyclic geometric phase angle vanishes [31]. This result does not,
however, generalize to the non-Abelian geometric phase [28].

Consider the quadrupole Stark HamiltonianH = λ(J · R)2, whereλ is a real coupling
constant,J = (J1, J2, J3) is the angular momentum operator, andR = (R1, R2, R3) is a 3-
vector representing the magnetic (or the electric) field. For a spin-1 particle, this Hamiltonian
has the form

H [R] = λρ

2

( 1 + 2ζ 2
√

2ζe−iϕ e−2iϕ√
2ζeiϕ 2 −√2ζe−iϕ

e−2iϕ −√2ζeiϕ 1 + 2ζ 2

)
(67)

where(ρ, ϕ, z) are the cyclindrical coordinates in theR-space, i.e.,

ρ :=
√
(R1)2 + (R2)2 ϕ := tan−1(R2/R1) z := R3

ζ := z/ρ, and we have used the standard spin-1 representations ofJi .
In view of the general results of [28], the eigenvalues of the Hamiltonian (67) are given

by

E1[R] = λρ2ζ 2 and E2[R] = λρ2(1 + ζ 2) (68)

whereR = (ρ, ϕ, ζ ). As seen from (68), ifρ 6= 0, then the Hamiltonian has two distinct
eigenvalues. In this case,E1[R] is nondegenerate andE2[R] is doubly degenerate. A set of
orthonormal eigenvectors ofH [R] is given by [28]

|1;R〉 := N−1
1

( e−iϕ√
2ζ

eiϕ

)

|2, 1;R〉 := N−1
2

(−√2ζe−iϕ

1
0

)
and |2, 2;R〉 := (N1N2)

−1

( e−iϕ√
2ζ

(1 + 2ζ 2)eiϕ

)(69)

whereN1 :=
√

2(1 + ζ 2) andN2 :=
√

1 + 2ζ 2. Note that these formulae are valid forρ 6= 0,
i.e., everywhere except theR3-axis.

Again using the general results of [28] or by direct calculation, we can compute Berry’s
connection one-formsAn◦. Doing the necessary algebra, we find

A1
◦[R] = dϕ and A2

◦[R] =
(

µ dϕ νeiϕ dϕ
νe−iϕ dϕ σ dϕ

)
(70)

where

µ := 2ζ 2

1 + 2ζ 2
= 2c2

1 + c2
(71)

ν := − ζ

(1 + 2ζ 2)
√

1 + ζ 2
= −c(1− c

2)

1 + c2
(72)

σ := − 1 + 2(1 + 2ζ 2)2

2(1 + 2ζ 2)(1 + ζ 2)
= −1 + 2(1 + c2)2

2(1 + c2)
(73)

andc := ζ/(1 +ζ 2) = z/
√
ρ2 + ζ 2 = R3/

√
(R1)2 + (R2)2 + (R3)2. Note that in the spherical

coordinates(r, θ, ϕ), we have

c = cosθ. (74)
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In view of equations (70),A1
◦[R] is a pure gauge. This was to be expected, for the system

is bosonic [31]. The connection one-formA2
◦[R] is not a pure gauge. In fact, unlike the spin-3

2
systems considered in the literature [24] even for the case of a precessing field whereθ is kept
fixed andϕ varies, the adiabatic geometric phase associated withE2 is non-Abelian.

In the remainder of this section, we shall compute the adiabatic non-Abelian noncyclic
geometric phase associated with the degenerate eigenvalueE2 for a precessing field with

θ = constant ϕ = ϕ0 + ωt and ϕ0, ω = constant. (75)

First, let us consider the matrix02
◦ . We can write equation (59) as the matrix Schrödinger

equation

i
d

dϕ
02
◦(ϕ) = h(ϕ)02

◦(ϕ) (76)

where

h(ϕ) dϕ := −A2
◦[R]. (77)

Clearly,h(ϕ) belongs to the Lie algebra of the unitary groupU(2). In particular, it can be
written in the form

h(ϕ) = 1
2

3∑
`=0

r`σ` (78)

whereσ0 stands for the unit 2× 2 matrix,σ` with ` ∈ {1, 2, 3} are Pauli matrices, and

r0 := −(µ + σ) r1 := −ν cosϕ

r2 := ν sinϕ and r3 := σ − µ.
Substituting these equations in (78), we obtain

h(ϕ) = 1
2[−(µ + σ)σ0 − ν(cosϕσ1− sinϕ σ2) + (σ − µ)σ3]

= 1
2eiϕσ3/2[−(µ + σ)σ0 − νσ1 + (σ − µ)σ3]e−iϕσ3/2 (79)

where we have used the identity

e−iϕσi/2σje
iϕσi/2 = cosϕσj + sinϕ

3∑
k=1

εijkσk for i 6= j. (80)

In (80),εijk stands for the totally antisymmetric Levi-Civita symbol withε123= 1.
In view of equation (79),h(ϕ) is the Hamiltonian of a spin-1

2 magnetic dipole in a
precessing magnetic field. Therefore, we can perform a unitary transformation of the Hilbert
space [33,34] to map it to a constant Hamiltonian. Under aϕ-dependent unitary transformation
U(ϕ), h(ϕ) and02

◦(ϕ) transform according to [34]

h(ϕ)→ h′(ϕ) = U(ϕ)h(ϕ)U(ϕ)†− iU(ϕ)
d

dϕ
U(ϕ)† (81)

02
◦(ϕ)→ 0

′2
◦ (ϕ) = U(ϕ)02

◦(ϕ)U(ϕ0)
†. (82)

SettingU(ϕ) = e−iϕσ3/2 in (81) and using (79), we find

h′ = 1
2[−(µ + σ)σ0 − νσ1 + (1− µ + σ)σ3]. (83)

For a precessing field,θ and consequentlyc, µ, ν, and σ are constant parameters.
Therefore,h′ is constant, and we have

0
′2
◦ (ϕ) = e−ih′(ϕ−ϕ0). (84)
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Substituting this equation in (82), we find

02
◦(ϕ) = eiϕσ3/2e−ih′(ϕ−ϕ0)e−iϕ0σ3/2. (85)

In view of equations (83) and (85), the matrix elements of02
◦(ϕ) are given by

02
◦11 = ei(µ+σ+1)(ϕ−ϕ0)/2

{
cos[(ϕ − ϕ0)1/2] + i

(
µ− σ − 1

1

)
sin[(ϕ − ϕ0)1/2]

}
(86)

02
◦12 = i

( ν
1

)
ei(µ+σ)(ϕ−ϕ0)/2ei(ϕ+ϕ0)/2 sin[(ϕ − ϕ0)1/2] (87)

02
◦21 = i

( ν
1

)
ei(µ+σ)(ϕ−ϕ0)/2e−i(ϕ+ϕ0)/2 sin[(ϕ − ϕ0)1/2] (88)

02
◦22 = ei(µ+σ−1)(ϕ−ϕ0)/2

{
cos[(ϕ − ϕ0)1/2]− i

(
µ− σ − 1

1

)
sin[(ϕ − ϕ0)1/2]

}
(89)

where

1 :=
√
(1 +σ − µ)2 + ν2 =

√
1 + 4c2(4 + 8c2 + 7c4 + c6)

2(1 + c2)
. (90)

Next we compute the entries of the matrixw2
◦(t) of equation (64). Using equations (69)

and doing the necessary algebra, we have

w2
◦11 = 1−

(
2c2

1 + c2

)
(1− e−i(ϕ−ϕ0)) = 1− µ(1− e−i(ϕ−ϕ0)) (91)

w2
◦12 = w2

◦21 =
[
c(1− c2)

1 + c2

]
(1− e−i(ϕ−ϕ0)) = −ν(1− e−i(ϕ−ϕ0)) (92)

w2
◦22 = 1−

(
1 + c4

1 + c2

)
[1− cos(ϕ − ϕ0)] + i

(
2c2

1 + c2

)
sin(ϕ − ϕ0)

= 1 +

(
σ +

3µ

4
+

1

2

)
[1− cos(ϕ − ϕ0)] + iµ sin(ϕ − ϕ0). (93)

Having obtained02
◦ andw2

◦ , we can use equation (63) to calculate the non-Abelian
noncyclic geometric phasě02

◦ = w2
◦0

2
◦ . As seen from the above formulae the result will

only depend onϕ0, ϕ, andc = cosθ . The expression foř02
◦ is rather lengthy. Therefore, we

shall instead give its trace52
◦ which is of physical importance,

52
◦ = ei(µ+σ)(ϕ−ϕ0)/2

(
X cos

[
1(ϕ − ϕ0)

2

]
+ Y sin

[
1(ϕ − ϕ0)

2

])
(94)

where

X := 1
4e−i(ϕ−ϕ0)/2[6 + 7µ + 4σ + (2− 7µ− 4σ) cos(ϕ − ϕ0) + 4i sin(ϕ − ϕ0)]

Y := i

81
e−i(3ϕ−ϕ0)/2(eiϕ0 − eiϕ){8ν2(1 + ei(ϕ+ϕ0)) + eiϕ0[µ(7µ− 5)− 3(2 +µ)σ − 4σ 2 − 2]

+eiϕ [µ(9µ− 19) + (14− 13µ)σ + 4σ 2 + 10]}.
One can check that forϕ = ϕ0,52

◦ = 2, as expected.
Furthermore, settingϕ = ϕ0 + 2π in (94), we obtained the trace of the cyclic non-Abelian

geometric phase (59) which is given by

52
◦|cyclic = −2eiπ(µ+σ) cos(π1). (95)

In this case, we can easily compute the eigenvalues of the non-Abelian cyclic geometric phase.
They turn out to be e±iπ(1+1).



Noncyclic geometric phase and its non-Abelian generalization 8169

Now choosingϕ0 = 0 andc = cosθ = 1/
√

3, which are the value used in Tycko’s
experiment [32], we have1 = √889/24≈ 1.24 and

52
◦ ≈ 1

3e0.10iϕ{(2 + 4 cosϕ + 3i sinϕ) cos(0.62ϕ)

+0.81[cos(ϕ/2) + 2.42i sin(ϕ/2)] sin(ϕ/2) sin(0.62ϕ)}.

9. Conclusion

In this paper we used the theory of dynamical invariants of Lewis and Riesefeld to develop a
general parameter space approach for the nonadiabatic geometric phase. We introduced a set of
time-dependent gauge-invariant geometric quantities5n(t) which we identified with the trace
of certain time-dependent gauge-covariant geometric quantities0̌n(t). For a cyclic evolution
with periodT , 0̌n(T ) yields the non-Abelian cyclic geometric phase. In the Abelian case,
0̌n(t)/|0̌n(t)| coincides with the Abelian noncyclic geometric phase studied in the literature.
Therefore, we identified thě0n(t) as a non-Abelian noncyclic geometric phase factor.

We also discussed the adiabatic limit0̌n◦ (t) of 0̌n(t). Again we showed that for the Abelian
case0̌n◦ (t)/|0̌n◦ (t)| is the known adiabatic noncyclic geometric phase.

We have finally presented a through analysis of the non-Abelian cyclic and noncyclic
geometric phases for a spin-1 quadrupole in a precessing field.

We wish to conclude this paper by pointing out the following observations.

(1) The original definition of the (nonadiabatic) non-Abelian cyclic geometric phase is due
to Anandan [20]. As pointed out in [18] Anandan’s definition is identical with the one
given in terms of the dynamical invariants. More specifically, the basis vectors|ψ̃a(t)〉
used by Anandan [20] to yield the non-Abelian connection one-form are precisely the
basis eigenvectors|λn, a; θ(t)〉 of our approach. In fact, our approach may be viewed as
a means to identify Anandan’s basis vectors|ψ̃a(t)〉 with the eigenvectors of a Hermitian
operator, namely a dynamical invariantI [θ(t)].

(2) In [7, 8], Pati shows that the Abelian noncyclic geometric phase angle of equation (46)
may be written in the form

γ̌n =
∫
C
�n (96)

where�n = i〈χn(t)|d|χn(t)〉 and|χn(t)〉 is a properly scaled state vector. Although Pati
terms�n a connection one-form, he shows that indeed�n is invariant under a gauge
transformation. This is because� is the difference of two connection one-forms, namely
the connection one-formAn and another connection one-formPn which also depends
on the initial state vector. As pointed out by one of the referees, it would be interesting
to see whether Pati’s results can be generalized to the non-Abelian case. Clearly, if one
chooses a basis in the degeneracy subspaceHλn(t) in which the non-Abelian noncyclic
phase factoř0n(t) is diagonal, then the diagonal elements may be treated as Abelian
noncyclic phase factors and Pati’s results may be used to express the corresponding phase
angles in the form (96) provided that0̌n(t) (alternativelywn(t)) is invertable. In such a
basis,0̌n = diag(g1eiγ̌ 1

n , . . . , glne
iγ̌ lnn ) =: GneiSn , where ‘diag(. . .)’ stands for a diagonal

matrix with diagonal elements (. . . ), g` and γ̌ `n are real,Gn := diag(g1, . . . , gln ), and
Sn := diag(γ̌ 1

n , . . . , γ̌
ln
n ). In view of Pati’s results, one may find an appropriate diagonal

matrix of one-formš�n such thatSn =
∫
C �̌

n. Furthermore,̌�n will have the formAn−Pn
for some matrix of one-formsPn. Now one may postulate thatPn is a connection one-
form, so that under a gauge transformation�̌n transforms covariantly. This, together
with the form of the diagonal elements ofPn which is given by Pati [8], is sufficient to
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obtain�̌n in an arbitrary basis. A complete generalization of Pati’s results to the non-
Abelian case would require a set of properly scaled state vectors|χn, a; θ〉 satisfying
�̌nab = i〈χn, a; θ |d|χn, b; θ〉. The explicit form of the vectors|χn, a; θ(t)〉 is not known
to the author.

(3) The functionF introduced in section 7 may be used to relate the adiabatic and nonadiabatic
Berry connection one-forms. Namely, the nonadiabatic connection one-formAn[θ ] is
the pullback [35, 36] of the adiabatic connection one-formAn◦[R], provided thatF is
differentiable. This has been originally pointed out in [19]. However, in [19] the existence
of F was assumed based on the evidence provided by the study of a magnetic dipole
interacting with a precessing magnetic field. In this paper, we have used the theory of
dynamical invariants to establish the existence ofF for a large class of quantum systems.
In particular, it is not difficult to see that they exist for the systems possessing a dynamical
group. This allows for the application of the holonomy interpretation of the nonadiabatic
geometric phase using a fibre bundle which has the parameter spaceM of the invariant as
its base space [19]. This bundle is the pullback bundleF∗(λ) of theU(N ) bundleλ used in
the holonomy interpretation of the adiabatic geometric phase [19,36]. Note, however, that
the functionF depends on the adiabaticity parameter [27]. In general, there are certain
values of the adiabaticity parameter for whichF becomes ill-defined or discontinuous.
The above constructions are valid only for those values of the adiabaticity parameter for
whichF is a differentiable function.

(4) In our derivation of the noncyclic geometric phase, we assume that the Hamiltonian is
a Hermitian operator. The generalization of our results to non-Hermitian Hamiltonians
is straightforward. One needs the machinery of the non-Hermitian dynamical invariants
and their biorthonormal eigenvectors to obtain a non-Hermitian analogue of the noncyclic
geometric phase.
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