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Abstract. We use the theory of dynamical invariants to yield a simple derivation of noncyclic
analogues of the Abelian and non-Abelian geometric phases. This derivation relies only on the
principle of gauge invariance and elucidates the existing definitions of the Abelian noncyclic
geometric phase. We also discuss the adiabatic limit of the noncyclic geometric phase and compute
the adiabatic non-Abelian noncyclic geometric phase for a spin-1 magnetic (or electric) quadrupole
interacting with a precessing magnetic (electric) field.

1. Introduction

Since the publication of Berry’s seminal paper [1] on the adiabatic geometric phase, the concept
of geometric phase has been generalized in a number of ways. Following the work of Aharonov
and Anandan [2] on nonadiabatic geometric phase, Samuel and Bhandari [3] showed that one
could indeed define an analogue of the Abelian geometric phase for a quantum state that does
not undergo a cyclic evolution. Zak [4], Aitchison and Wanelik [5], Mukunda and Simon [6],
Pati [7, 8] and de Polavieja anddjvist [9] have ellaborated on the theoretical aspects of
noncyclic geometric phases, and Wu and Li [10], Weinfurter and Badurek [11], Christian and
Shimony [12], Wagh and Rakhecha [13] and Waglal [14] have explored its experimental
consequences. In all these investigations the authors consider Abelian noncyclic geometric
phases. The main purpose of this paper is to offer an alternative approach to noncyclic
geometric phases which clarifies the existing results on the Abelian noncyclic geometric phase
and allows for its non-Abelian generalization.

The cyclic geometric phase can be conveniently discussed within the framework of the
theory of dynamical invariants of Lewis and Riesenfeld [15]. The application of dynamical
invariants in the study of the cyclic geometric phases has been considered by Morales [16] and
Monteolivaet al [17] for the Abelian case and by the present author [18] for the non-Abelian
case.

In this paper, we shall first present a brief review of the necessary results from the theory
of dynamical invariants and comment on their relevance to the cyclic geometric phases in
section 2. In section 3, we outline an alternative approach to the nonadiabatic cyclic geometric
phase which is essentially the same as Berry’s approach to the adiabatic geometric phase [1].
This generalizes the analysis of [19] in which such an approach is developed for the description
of the nonadiabatic cyclic geometric phase of a magnetic dipole interacting with a precessing
magnetic field. In section 4, we derive an expression for the evolution operator and discuss
its gauge invariance. In section 5, we give our definition of the noncyclic geometric phase
and explore its relationship to the cyclic geometric phase [18, 20]. In section 6, we restrict
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ourselves to the Abelian case and compare our definition of the noncyclic Abelian geometric
phase with the earlier definitions [5]. In section 7, we present a discussion of the adiabatic
approximation and show that our analysis reproduces the results of [9] in the adiabatic limit.
In section 8, we calculate the adiabatic non-Abelian noncyclic geometric phase for a spin-1
magnetic (or electric) quadrupole interacting with a precessing magnetic (resp. electric) field.
Finally, we present our concluding remarks in section 9.

2. Invariant operators and cyclic geometric phase
As shown by Lewis and Riesenfeld [15], one can write the solution of theéd8atger equation

. d
I3 V) = HOW®) @)

for a time-dependent Hamiltonial (r), as a linear combination of certain eigenvectors of a
Hermitian dynamical invariant. The latter is a Hermitian operdioy satisfying
dr@) .
ar =i[1(r), H(®)]. ()
We shall assume that bo#ti(+) and! (t) have discrete spectra.
Now let us label the eigenvalues bfr) by 1, and the degree of degeneracyiqfby /,,.
Furthermore, leth,,, a; t) be arbitrary orthonormal eigenvectorsiat) satisfying

1(t)|)\nva; t>:)‘n|)"ma;t> (3)
<)\mv b; t|)"n» a; t> = 6mn8ha (4)
A
DN wast)hart] =1 )
n a=1
wherea andb are degeneracy labels taking their valueglif?, . . ., [,}.

Clearly, unlike the eigenvalues, and the corresponding degeneracy subspateg),
the eigenvectorp,,, a; t) are not uniquely determined by the eigenvalue equation (3). They
are only determined up to unitary transformations of the degeneracy subgpaces

[n
Ans @ity = (s ast) =Y Ay, bi £)upa (1) (6)
b=1
whereu,,(¢) are the entries of an arbitrary unitayx [, matrixu(z).
The main result of Lewis and Riesenfeld [15] is that one can choose a particular set of
eigenvectors$h,, a; t)’ that are solutions of the Sdhdinger equation (1). These eigenvectors
are given by [18]:

In
s as t) =Y |hn, as el (0) 7
b=1
where
W'(t) = Te o MO n Q) = Te T hlE - AN n @) (8)

7T stands for the time-ordering operator and(t), £"(t) and A" (¢) are Hermitian,, x [,
matrices with entries

AZb(t) = EZb(t) - Zb(t) (9)
Enp(t) == (An,as t|H(t)| My, b3 1) (10)
AL (@) = i<)»n,a;t @ A, b t> (12)
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respectively. In other wordsg/ (r) is a solution of the matrix Scidinger equation
.d
IEu”(t) = A"(Hu"(1). (12)
If the matrices£” (r) and A" (r) commute, then we can write
u" (t) — Tefi jol En(t') dt’Tefi jol A (1) dt’un (0) (13)
For the case where the invariahtt) is periodic [17,18], i.el(T) = I(0) for someT,
[An,a; TY = |Ay,a; 0y and|r,, a; t)’ undergoes a cyclic evolution. The corresponding non-

Abelian nonadiabatic cyclic geometric phase [20] is giverbyT") wherel” (¢) is defined to
be the unique solution of the matrix Sédinger equation

i%l‘”(r) =-A"OI" (@) "o =1 (14)
Alternatively,

I(t) i= T A (15)
If the eigenvalue., is nondegenerate, thén= 1 and we have

u"(t) = 4O (1) (16)
where
8,(t) = —/Ot Eydt = — /(:(kn; t'|H(@ ) Ay t)) dt’ a7)

t t
F”(t) — ei}/n(l) and Vn(t) = / An(t/) dr’ = / i<)nn; P i
0 0 dr’

In this casd™(T) is the Abelian nonadiabatic cyclic geometric phase [2].

An t’> dr’. (18)

3. An alternative approach to nonadiabatic cyclic geometric phase

In order to make the geometric character of the cyclic geometric phase more transparent, we
shall express the invariantr) as a linear combination of a set of linearly independent constant
Hermitian operator¥;,

N
I(t) =Y _0'()X;. (19)
i=1
Here N is a fixed non-negative integer, the coefficiefitsare real-valued functions, ari
are generators of the group(#) of unitary transformations of the Hilbert spagge If the
system has a finite-dimensional dynamical gra@upthen X; are the representations of the
generators o6;. In this caseV is just the dimension of;. However, if the Hilbert space is
infinite-dimensional, then in principle one will need an infinite numiesf generators; of
U (H) to satisfy (19) 1, and one must find a way to make the right-hand side of (19) well defined.
We shall not be concerned with the subtleties of the infinite-dimensional unitary group [21],
and assume tha is finite.
Now, since the time dependence Iaf) is governed by those of the parametétswe
can consider the parameter-dependent opetrdtdrwith eigenvaluesi., and eigenvectors
[\, a; 0), and write

1) =1[0(1)] and |Ans @i 1) = |An, a; 6(1)). (20)

T Note that for each value ofthere is a finite numbeN of generatorsX; for which (19) holds. However, for an
infinite-dimensional Hilbert space, ashangesV might not have an upper bound. Therefore, in order to satisfy (19)
one would, in general, need to include an infinite number of generators of the §i@up

¥ Note that the eigenvalues of an invariant operator are constant [15, 18].
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Here# stands for@?, 02, ..., 6"). The parameter$’ may be viewed as local coordinates of
a parameter spackf. As time progresses they trace a cutvia M.

If the system possesses a dynamical gréypthen we can introduce the parameter-
dependent Hamiltonian

N
H[R] =) R'X; (21)
i=1

and identifyH (¢) with H[R(¢)] [1]. This means that the parameter spadeof the invariant
(19) is the same as the parameter space of the Hamiltonian (21). In this case, we can use
the results of [22] to identify\ with a submanifold of the flag manifol@/ T whereT is a
maximal torus ofG.

Now suppose that the cur¢draced by the parameteié) lies in a local coordinate patch
of the parameter spack!. In this case, we can introduce the nonadiabatic analogue of the
non-Abelian Berry connection one-form [19, 23],

N
A"[0] = Z Ar[6]de". (22)
i=1
The matrix elements od”[#] and its componentd?[6] are given by

A[0] = i(hn, a; O1d |2, b; 0) (23)

A0y == 1{ Ay, a; 0 -
(A7[0Dan < a0 |55

A,y b, 0> (24)

respectively. In equation (23) stands for the exterior derivative with respectto In view
of equations (11), (20), (22), (23), and (15), we have

; o g 9970 ;
A" (1) dr = ; AT[6(1)] 5 dr = A"[6(n)] (25)
(1) = Pe o A" (26)

whereP stands for the path-ordering operator. In particular, for a periodic invariant, the curve
C traced byd (¢) is closed, and the non-Abelian cyclic geometric phase takes the form

(T) = P fe A1, (27)

As pointed out in [18], this expression agrees with Anandan’s definition of non-Abelian cyclic
geometric phase [20].

If C does not lie in a single coordinate patch/of, one must evaluate the path-ordered
integrals in (26) and (27) along the segmentg dfelonging to different coordinate patches
and multiply the resulting unitary matrices in the order in which the cdnigtraversed in
time.

4. Evolution operator and its gauge invariance

In general, we can write any solution of the Satinger equation (1) as a linear combination
of |A,, b; t), i.e.,

1, Iy
W)=Y > Colrwa;t) =" Coup,()|rn, b 1) (28)
n a=1

n a,b=1
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where

In

Coi= > uph @0, ity (@) and  Cli= (@it (0). (29)
b=1

In view of equation (28), the evolution operator is given by

U =Yy, Z uly (D) An, @; 1) (A, b 0] (30)
n a,b=1
Now let us recall that the eigenvectaps,, a; 0) are not uniquely determined by the
eigenvalue equation

I[60]|An, a; 0) = Aylhy, a; 6). (31)

They are subject to arbitrary gauge transformations
Vhons @3 6) = Ay, a: 6) ZMn,b ryvp,[6] (32)

wherev!, [0] are entries of ard, x [, unitary matrixv”[#]. In fact, if we denote the local
coordinate patch corresponding to the coordinatesy O, v* may be viewed as a smooth
function mapping? to the unitary groug/ (/).

Using equation (23), we can easily derive the gauge transformation lad¥ fe}, namely

A"[0] — A”[0] = v"[0]TA"[6]v"[6] +iv"[6]" dv"[6]. (33)

Furthermore, in view of equations (25), (14), and (33), we have the following transformation
rules forI' (¢) andu” ()

I"(1) — (1) = v"[0O] T (1)v"[0(0)] (34)
u'(t) — @"(t) = v"[0N] u" ()" [0(0)]. (35)

A simple consequence of equations (32) and (35) is that the evolution operator (30) is invariant
under the gauge transformations.

For a periodic invariank (¢), with 6(T) = 6(0), I'*(T) is related td™ (T') by a similarity
transformation

"(T) = v"[0(0)] T (T)v"[6(0)]. (36)

In other words, under a gauge transformation (32)I") transforms covariantly. Therefore, its
eigenvalues and, in particular, its trace are gauge invariant. These are essentially the physically
observable quantities associated with the non-Abelian cyclic geometric phase.

5. Noncyclic geometric phase

The main reason for Berry’s consideration of a periodic Hamiltonian [1] and Aharonov and
Anandan’s consideration of cyclic evolutions [2] is the fact that for a cyclic state with period
T—in our approach & -periodic dynamical invariant—the unitary matii¥ (7') transforms
convariantly under a gauge transformation (32). This property"@fl’) guarantees that

its eigenvalues and its trace are gauge invariant. This in turn raises the issue of exploring
their physical consequences. There is, however, another way of constructing gauge-invariant
quantities using™ (¢).
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In view of equations (34) and (39)7(¢) andu” (r) have the same gauge transformation
properties. This means that if we replacét) in the expression (30) for the evolution operator
by I'"(¢), then we shall still obtain a gauge-invariant operator, namely

ln
VD)= Y Doyl ai6(0) ., b 60)]. (37)
n ab=1
In fact, because the gauge transformations (32) are the unitary transformations of the
degeneracy subspacgs, [0(1)], the restriction (or projection) oV (¢) onto the degeneracy
subspaces, i.e.,

Ly
VI(6) 1= ) Tk, a; 6()) (A, b; 6(0)] (38)
a,b=1
will also be gauge invariant. By construction, the operatdt§) are uniquely determined
by the curveC and its end points. In particular, they are independent of the duration of the
evolution. Therefore, they are also geometric quantities.

Next let us note that the gauge invariance and geometric charac¥&rn(ofwill not be
affected, if we exchange the positions|af, a; 6(¢)) and (A,, b; 6(0)| in equation (38). In
this way we obtain a set of gauge-invariant scalars:

L, A
(1) i= Y T (1), b 0(0)|An, @ 0(0)) = ) wp, ()T, (1) = tracef” (HI™ (1))
a,b=1 a,b=1
(39)
where we have introduced thex I, matricesw” (r) with entries
Wy, (1) i= (An, b; 0(0)| Ay, @; O(2)). (40)

By definition w" (r) only depend on the end points of the cuteI(¢) are also uniquely
determined by. Therefore, as expectell”(¢) are geometric quantities.

Now let us consider & -periodic invariant (a cyclic evolution), for whidh,,, a; 0(T)) =
[An, a; 0(0)). Inthis casew™(T) = w"(0) is just the identity matrix, and equation (39) reduces
to

1" (T) = trace[™"(T)]. (42)

Therefore, for a cyclic evolutiofl” (T') yields the trace of the non-Abelian cyclic geometric
phase [23, 24].

On the other hand, sinc&l"(r) is gauge invariant, we can compute it in a basis
{IAn, a; 6(1)).} in which I'"(¢) is diagonal. If we denote the eigenvaluesltir) by €7@,
then we have

ln .
(@) =Y €% (hy, a; 0(1) A, a; 0(0)),. (42)
a=1
As seen from equation (421" (¢) is, in general, a nonunimodular complex number.
In view of the above analysis, the matiiX (C) defined by

() = I"(t) := w" (O (1) (43)

is a gauge-covariant geometric quantity. We shall therefore identify it asdheAbelian
noncyclic geometric phase factoiClearly, the eigenvalues at"(C) and its trace namely
I1"(¢) are gauge-invariant quantities which can, in principle, be observed experimentally. The
non-Abelian noncyclic geometric phase facldr(C) is therefore as physically significant as

its cyclic counterpart (27).
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As mentioned above, for a cyclic evolution where the invaria(rp is T-periodic,
[Ansa; 0(T)) = Ay, a; 6(0)) andw” (T) is the identity operator. Inthis cade’(T) isidentical
with the cyclic geometric phase factbf (T') given by equation (27).

6. Abelian noncyclic geometric phase

For a nondegenerate eigenvaljeof the invariant/ (¢), we have

() = w"(OT" (1) = T"(1) = (b3 6(0) |15 6(1))E? (44)
wherey, (r) is the phase angle given by (18). In particular,

P (0] = [w" ()] = |{(An; 00)|An: (1)) (45)
depends only on the end points of the cutvef [T (1)| # 0, then we can consider the phase
of I'"(¢) which is given by

dn® — _
[T (o)1

— gl @Oty ®)] (46)

where

g 20 (i 6O 00)) =[<xn;e(0>|xn;e<z)>}l/z (47)
o wr @] {a; 00)| A 6(0)] o 0(0) [on: 6(0)) .

The phase anglg, (r) is areal noncyclic geometric phase anglé consists of two pieces:
y, (t) that depends on the cur@e andn, () that depends on the end pointsdof

The phase factor (46) coincides with the ‘real noncyclic geometric phase’ introduced by
Aitchison and Wanelik [5]. As discussed by Aitchison and Wanelik it is equivalent to the
noncyclic geometric phase of Samuel and Bhandari [3] and Mukunda and Simon [6].

7. Adiabatic approximation and the noncyclic geometric phase in the adiabatic limit

Let H[R] be a parameter-dependent Hamiltonian with a discrete spectrum. We shall denote
the eigenvalues off[R] by E,[R], their degree of degeneracy By, and the corresponding
degeneracy subspacesiy[ R]. Let|n, a; R) form acomplete set of orthonormal eigenvectors

of H[R]. They satisfy,

H[R]|n,a; R) = E,[R]In, a; R) (48)

wherea is a degeneracy label taking its valug(ip 2, ..., N'}.

Now consider the time-dependent Hamiltoniéiir) := H[R(z)], where the parameters
R(t) = (RY(t), R?(t), ..., R(t)) trace a curv€ inthe parameter spadé of the Hamiltonian.
We shall denote the duration of the evolution of the system bpd suppose that during the
evolution no level crossings occur. Furthermore] lej be a dynamical invariant satisfying (2),
and suppose that it depends on a set of parametergo®, 02, ..., 0Y), i.e., I(t) = I[6(1)]
whered () traces a curve in the parameter spackt of the invariant. Sincd (¢) yields
the solution of the Sclidinger equation, the dynamics of the system can be encoded in the
definition of a function

F.:M—> M defined by F(R) := 6. (49)

In particular, F maps the curv€ onto the curve, andi(t) = I[60(t)] = I[F(R(t))]. Note,
however, that there does not exist a universal funcfiodescribing all possible dynamical
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processes. In other words, the definitionfofilso depends on the choice of the Hamiltonian
or alternatively the curve€'. In this sense, it is more appropriate to define the function

F Py — P by F(C)=cC (50)

whereP,, andP,, are the space of paths M and M respectively. The latter are infinite-
dimensional spaces. Therefore, it is more convenient to use the furiCtidth the provision
of its nonuniversal character.

Next we define a normalized time variable by= ¢ /7, and assume that for sufficiently
large values of we can expand (¢) and H (¢) in powers oft 1, i.e.,

1(t) = I(ts) = Io(s) + Z T L (s) and  H(t) = H(ts) = Ho(s) + Z T Hy(s)
=1 =1

(51)

wherel, and H, are Hermitian operators arg # 0 # Hy. If we substitute = s and (51)
in (2) and take the limit — oo, we find [Io(s), Ho(s)] = 0. This means that in this limit,
wherel (t) — Io(s) andH (t) — Hp(s), the eigenvectors aof(z) and H () coincide. Using
the notation of the preceding sections, we have

im |A,, a;t) = |n,a;t). (52)
Becauséh,, a; t) = |A,, a; 0(1)), In, a; t) = |n, a; R(t)), and (52) is independent of the form
of the curveC,

lim |2,,a;0)lc = In,a; R)lc. (53)
T—>00

In particular, this implies that for sufficiently large valueswfwe can choose an invariant

whose parameter space is the same as that of the Hamiltovian, M. ThereforeC andC

belong to the same parameter spateln this case, we can also express (52) and (53) by
lim F =idy (54)

T—>00
where idy is the identity function on\/.
Now let us use equations (30) and (52) to compute the evolution operator in the limit
T — oo. This leads to

lim @) = UQ@) (55)
where

vO@w=y" i gy (Dln, a; 1)(n, b; 0] (56)

ul(t) = &0 Fh&; (57)

Son(t) i= — /Ol E, (") dt (58)

I7(1) 1= Pe fro 18 (59)

(A"[R)ap :=i(n, a; R|d|n, b; R). (60)

Here the subscript is inserted to mean that the corresponding quantities are obtained in the
adiabatic limit ¢ — oo) from the ones without a subscript The matrix of one-forma\”[R]
is the non-Abelian Berry connection one-form [23].

In practice,t is a finite number and the limit — oo is interpreted by the condition
that r must be much larger than the time (inverse of energy) scale of the quantum system.
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If this happens to be the case the above results may be used. It is not difficult to check that
an operatod (¢) with the same eigenvectors as the Hamiltonian satisfies equation (2) only if
the eigenvectors of the Hamiltonian are constant. This is often not the case. Therefore, in
an eigenbasi§|n, a; t)} of the Hamiltonian, the invariant(¢) is not diagonal. However, if

the above adiabaticity condition is fulfilled, i.e:,is much larger than the timescale of the

problem, then the off-diagonal matrix elementsi@f) are much smaller than its diagonal

matrix elements. The approximation scheme in which one neglects the off-diagonal matrix
elements ofl (¢) is called theadiabatic approximation[25-27]. In this approximation, we

have

|An, a; 1) = |n,a; 1) U@) ~U9@) and F ~idy. (61)

This is a valid approximation scheme if and only if
o d i(m, b; R|%C|n, a; R)
ba (1) =1 <’" bR ’E E(0) — En()

Herem andn are arbitrary labels (satsifying # n) anda andb are arbitrary degeneracy

labels associated with the eigenvalugsr) and E,, (¢), respectively. The second equation in

(62) is obtained by differentiating both sides of equation (48) with respect to time and taking

the inner product of both sides of the resulting equation Wwithp; ¢). The meaning of~ 0’

in (62) is that the left-hand side of (62) which has the dimension of frequency must be much

smaller than the frequency (energy) scale of the system.

In view of (61), we have the following expression for the adiabatic non-Abelian noncyclic

geometric phase (43):

~0 for m#n. (62)

n,a;R>=

(1) = w" (O (1) (63)
wherew” (r) is anN x N matrix with entries
w’ (1) := (n,a; R(O)|n, b; R(1)). (64)

If E,[R]is nondegeneratey’ = 1 and
v . R() R(t)
I (1) = w" (r)e"" where y., (1) == / A"[R] = / i(n; R|d|n; R). (65)
R(0) R(0)
The phase of " (¢), namely
g _ [ 11 RO ROV )
(n; R(1)|n; R(0))

is precisely the Abelian adiabatic noncyclic geometric phase studied by de Polavieja and
Sjoquist [9].

(66)

8. Application: spin-1 quadrupole in a precessing magnetic field

The simplest possible quantum system that allows for the occurrence of a non-Abelian
geometric phase is a system with a three-dimensional Hilbert space and a dynamical invariant
1(t) which has a nondegenerate and a degenerate eigenvalue [18]. If the system undergoes
an adiabatic evolution, then the role of the invariant is essentially played by the Hamiltonian.

In particular, the Hamiltonian must have a nondegenerate and a degenerate eigenvalue. The
moduli space of all such Hamiltonians (for a three-dimensional Hilbert space) has the manifold
structure of the projective spadeP?, [23]. A thorough treatment of the problem of the
adiabatic non-Abelian cyclic geometric phase for such a system is presented in [28]. In this
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section, we shall use the results of [28] to investigate the adiabatic non-Abelian noncyclic
geometric phasé“g(t) for a spin-1 quadrupole interacting with a precessing magnetic or
electric field. The problem of the non-Abelian geometric phase for a%pjuadrupole has
been considered by Zee [24], Mead [29] and Avedral [30, 31]. For a bosonic system such
as the spin-1 quadrupole considered here, one can show that Berry’s connection one-form is
a pure gauge and Berry’s cyclic geometric phase angle vanishes [31]. This result does not,
however, generalize to the non-Abelian geometric phase [28].
Consider the quadrupole Stark HamiltoniBin= A(J - R)?, wherex is a real coupling
constantJ = (Jy, Jo, J3) is the angular momentum operator, aRd= (R, R?, R®) is a 3-
vector representing the magnetic (or the electric) field. For a spin-1 particle, this Hamiltonian
has the form
Ao 1+ 2Z2 \/é;efigo g2y
H[R] = («/’;e“ﬂ 2 —ﬁge"ﬂ)
g2y _ﬁé-eizp 1+ 24-2
where(p, ¢, z) are the cyclindrical coordinates in tiespace, i.e.,

p =+ (RY2 + (R?)? ¢ :=tan }(R?/RY z:=R®
¢ = z/p, and we have used the standard spin-1 representatiohs of
In view of the general results of [28], the eigenvalues of the Hamiltonian (67) are given

by

(67)

E1[R] = 2p?¢? and  Eo[R] = ap%(1+¢?) (68)

whereR = (p, ¢, ¢). As seen from (68), ifo # 0, then the Hamiltonian has two distinct
eigenvalues. In this cas&y[R] is nondegenerate ankb[R] is doubly degenerate. A set of
orthonormal eigenvectors @f[ R] is given by [28]

e lv
|1; R) _N—1<f§>

f;e iy g lv
) and 12,2; R) := (N1N2)_l< V¢ )
0 (1+22)e?

whereN; ;= /2(1 +¢?) andN, := /1 + 2:2. Note that these formulae are valid for£ 0,
i.e., everywhere except th?-axis.

Again using the general results of [28] or by direct calculation, we can compute Berry’s
connection one-forma”. Doing the necessary algebra, we find

AJR] = dg and  A%[R] = < pdp  ve d(ﬂ) (70)

(69)
12,1; R) = Nzl(

ve'?dp odyp

where
. 2¢? B 2c?
W= T Taa (71)
¢ c(1-c?®
= — = — 72
B OV e A T e
o 1+20+27)? 0 14+21+c%? 73)
T T A+ 2D+ | 21 +cD)

ande := ¢/(1+¢2) = z//p2 + 2 = R3/\/(RY)2 + (R2)2 + (R3)2. Note that in the spherical
coordinatesr, 6, ¢), we have

¢ = Ccosf. (74)
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In view of equations (70)AX[R] is a pure gauge. This was to be expected, for the system
is bosonic [31]. The connection one-fori[ R] is not a pure gauge. In fact, unlike the s@n-
systems considered in the literature [24] even for the case of a precessing fieldvidkept
fixed andy varies, the adiabatic geometric phase associatedAyiith non-Abelian.

In the remainder of this section, we shall compute the adiabatic non-Abelian noncyclic
geometric phase associated with the degenerate eigerivaloe a precessing field with

6 = constant @ = @o + wt and @0, w = constant (75)

First, let us consider the matri32. We can write equation (59) as the matrix Sidinger
equation

.d
Id—rf(w = h(p)[2(p) (76)
©
where
h(g) dg := —A?[R]. (77)

Clearly, h(p) belongs to the Lie algebra of the unitary group2). In particular, it can be
written in the form

3
h(p) =3 rlo (78)
¢=0
whereog stands for the unit % 2 matrix,o, with ¢ € {1, 2, 3} are Pauli matrices, and
r0 = —(u+o0) rti=—y Ccosyp
r? :=vsing and P =0 — .

Substituting these equations in (78), we obtain
h(g) = 3[—(1u + )00 — v(COSpo1 — SiNg 07) + (0 — p)o3]
= 1%/~ (i +0)op — voy + (0 — p)osle 7/ (79)
where we have used the identity

3
e ¥i/%0,;€%71/2 = cospa; +sing Y €;jr0% for i+ j. (80)
k=1
In (80), ¢ stands for the totally antisymmetric Levi-Civita symbol withs = 1.

In view of equation (79)A(¢) is the Hamiltonian of a spir%— magnetic dipole in a
precessing magnetic field. Therefore, we can perform a unitary transformation of the Hilbert
space [33,34] to map it to a constant Hamiltonian. Undexd&pendent unitary transformation
U(p), h(p) andT'?(¢p) transform according to [34]

. d
h(p) — h'(p) = U@h(@U@P)" - luw)@u(w)* (81)
I2(p) — T2(p) = U@ T2(@)U(po)". (82)
Settingl{(¢) = e7'*?*/2in (81) and using (79), we find
W = i[—(u+0)o0 —vor + (1 — p+0)og). (83)

For a precessing fieldy and consequently, u, v, ando are constant parameters.
Therefore/’ is constant, and we have

() =e W@, (84)
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Substituting this equation in (82), we find
[2(p) = voa/2g vy givoos/2, (85)

In view of equations (83) and (85), the matrix element&#(fyp) are given by

O . —o—1\ .
1%, = ez foosfy — a2 +i (125 sy - 2| (@0)
1'*312 — i (i) d (uto) (9—90)/2d (#+¢0)/2 sin[(¢ — o)A /2] (87)
1—*521 =i (i) g (1t0) (9 —=90)/2 =1 (p+¢0) /2 sin[(¢ — ¢o)A /2] (88)

r2, = o bt 2 ool — goya /2 -1 (L0 sinlie a2} (69)

where

V1+4c2(4 + 82+ T7ch +¢B)
2(1+c¢?) '

Next we compute the entries of the matiiX(¢) of equation (64). Using equations (69)
and doing the necessary algebra, we have

Ai=y1+0 —p)2+12= (90)

2c? . )

wgll =1- (1 +C2) (1 — eﬁl((ﬁin)) =1- /'L(l — ef|(‘ﬂ*¢0)) (91)
(1 — 2 ) .

w§12 = w§21 = [%] (1 — e,|(w,¢0)) = —])(1 _ e*'(?*‘ﬂo)) (92)

1+c* 2¢?
2 . .

Woop = 1- (1 +CZ> [1 — coS¢p — (Po)] +1 (1 +C'2> Sin(¢ — o)

3u 1 o
=1+ U+T+§ [1—C01(p—¢0)]+|M5|n(¢_¢0)' (93)

Having obtained'? and w?, we can use equation (63) to calculate the non-Abelian
noncyclic geometric phase? = w?I'2. As seen from the above formulae the result will

only depend orpg, ¢, andc = cosf. The expression fof’o2 is rather lengthy. Therefore, we
shall instead give its tracd? which is of physical importance,

M2 = g+ 9—p0)/2 (X cos[ A(wz— wo)} +ysin [ A((PZ— o) D (94)
where

X = 3€7 W26+ Tu + do + (2 — T — 4o) COS(p — o) + 4i Sin(p — ¢o)]

V= ie—iﬁw—‘ﬂo)/z(ew0 — €9){80%(1 + W) + €01 (T — 5) — 3(2 + o — do? — 2]

+€9[ (9 — 19) + (14— 13u)o + 402 + 10]}.

One can check that far = go, I12 = 2, as expected.
Furthermore, setting = ¢g + 27 in (94), we obtained the trace of the cyclic non-Abelian
geometric phase (59) which is given by

1oycic = —267 ) cog( A). (95)

In this case, we can easily compute the eigenvalues of the non-Abelian cyclic geometric phase.
They turn out to be &7 (A+D
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Now choosinggy = 0 andc = cosd# = 1/+/3, which are the value used in Tycko's
experiment [32], we havaA = +/889/24 ~ 1.24 and

2 ~ 1e®1%{(2 + 4 cosp + 3ising) cog0.62p)
+0.81[cogp/2) + 2.42isin(¢/2)] sin(¢/2) sin(0.62p)}.

9. Conclusion

In this paper we used the theory of dynamical invariants of Lewis and Riesefeld to develop a
general parameter space approach for the nonadiabatic geometric phase. We introduced a set of
time-dependent gauge-invariant geometric quantifiég) which we identified with the trace
of certain time-dependent gauge-covariant geometric quaniities. For a cyclic evolution
with period T, I'*(T) yields the non-Abelian cyclic geometric phase. In the Abelian case,
I (r)/|I"*(¢)| coincides with the Abelian noncyclic geometric phase studied in the literature.
Therefore, we identified thE” (r) as a non-Abelian noncyclic geometric phase factor.

We also discussed the adiabatic Iilﬁﬁft(t) of I'*(¢). Again we showed that for the Abelian
casefg(t)/|fg(t)| is the known adiabatic noncyclic geometric phase.

We have finally presented a through analysis of the non-Abelian cyclic and noncyclic
geometric phases for a spin-1 quadrupole in a precessing field.

We wish to conclude this paper by pointing out the following observations.

(1) The original definition of the (nonadiabatic) non-Abelian cyclic geometric phase is due
to Anandan [20]. As pointed out in [18] Anandan’s definition is identical with the one
given in terms of the dynamical invariants. More specifically, the basis vegigrs))
used by Anandan [20] to yield the non-Abelian connection one-form are precisely the
basis eigenvectola,, a; 6(¢)) of our approach. In fact, our approach may be viewed as
a means to identify Anandan’s basis vectafrs(r)) with the eigenvectors of a Hermitian
operator, namely a dynamical invariaffp (¢)].

(2) In [7, 8], Pati shows that the Abelian noncyclic geometric phase angle of equation (46)
may be written in the form

Yo = /c Q" (96)

whereQ" = i{x,(t)|d|x.(t)) and|x,(t)) is a properly scaled state vector. Although Pati
terms Q" a connection one-form, he shows that ind€&dis invariant under a gauge
transformation. This is becauskis the difference of two connection one-forms, namely
the connection one-form" and another connection one-forAt which also depends

on the initial state vector. As pointed out by one of the referees, it would be interesting
to see whether Pati’s results can be generalized to the non-Abelian case. Clearly, if one
chooses a basis in the degeneracy subspacé) in which the non-Abelian noncyclic
phase factod™(¢) is diagonal, then the diagonal elements may be treated as Abelian
noncyclic phase factors and Pati's results may be used to express the corresponding phase
angles in the form (96) provided th&t (s) (alternativelyw” (¢)) is invertable. In such a
basis,I"" = diag(g:€7", ..., g, €"") =: G"&S, where ‘diag. ..)’ stands for a diagonal

matrix with diagonal elements (.), g, andy,‘ are real,G" := diaggs, .., g,), and
S, = diag(y.l, ..., /). In view of Pati's results, one may find an appropriate diagonal

matrix of one-forms2” suchthas, = f, 2". Furthermore2” will have the formA” — P
for some matrix of one-form®”. Now one may postulate th&" is a connection one-
form, so that under a gauge transformatiof transforms covariantly. This, together
with the form of the diagonal elements 8f' which is given by Pati [8], is sufficient to
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®3)

(4)

obtain$2” in an arbitrary basis. A complete generalization of Pati’s results to the non-
Abelian case would require a set of properly scaled state vegtera; 6) satisfying

Q’;h = i{xa, a; 0]d|x., b; 0). The explicit form of the vectory,, a; 6(¢)) is not known

to the author.

The functionF introduced in section 7 may be used to relate the adiabatic and nonadiabatic
Berry connection one-forms. Namely, the nonadiabatic connection oneA6fé]j is

the pullback [35, 36] of the adiabatic connection one-fotfij R], provided thatF is
differentiable. This has been originally pointed outin [19]. However, in [19] the existence
of F was assumed based on the evidence provided by the study of a magnetic dipole
interacting with a precessing magnetic field. In this paper, we have used the theory of
dynamical invariants to establish the existenc& dér a large class of quantum systems.

In particular, it is not difficult to see that they exist for the systems possessing a dynamical
group. This allows for the application of the holonomy interpretation of the nonadiabatic
geometric phase using a fibre bundle which has the parameter.spatéhe invariant as

its base space [19]. This bundle is the pullback buiti{) of theU (V) bundlex used in

the holonomy interpretation of the adiabatic geometric phase [19, 36]. Note, however, that
the functionF depends on the adiabaticity parameter [27]. In general, there are certain
values of the adiabaticity parameter for whighbecomes ill-defined or discontinuous.
The above constructions are valid only for those values of the adiabaticity parameter for
which F is a differentiable function.

In our derivation of the noncyclic geometric phase, we assume that the Hamiltonian is
a Hermitian operator. The generalization of our results to non-Hermitian Hamiltonians
is straightforward. One needs the machinery of the non-Hermitian dynamical invariants
and their biorthonormal eigenvectors to obtain a non-Hermitian analogue of the noncyclic
geometric phase.
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